

seminarium Matematyka Dyskretna

wtorek, 23 maja 2023 r., godz. 12:30, s. 612 C-7

Uniquely embeddable 2-factors

Igor Grzelec WMS AGH

An embedding of a graph G, of order n, (in its complement \overline{G}) is a permutation σ on V(G) such that if an edge xy belongs to E(G), then $\sigma(x)\sigma(y)$ does not belong to E(G). In others words, an embedding is an (edge-disjoint) packing of two copies of G into a complete graph K_n . We will consider the problem of the uniqueness of such embeddings. Two embeddings σ_1, σ_2 of a graph G are said to be distinct if the graphs $G \oplus \sigma_1(G)$ and $G \oplus \sigma_2(G)$ are not isomorphic (for graphs G_1 and G_2 with $V(G_1) = V(G_2)$ and $E(G_1) \cap E(G_2) = \emptyset$ the edge sum $G_1 \oplus G_2$ has $V(G) = V(G_1) = V(G_2)$ and $E(G) = E(G_1) \cup E(G_2)$). A graph G is called uniquely embeddable if for all embeddings σ of G, all graphs $G \oplus \sigma(G)$ are isomorphic.

Let $C_{n_1} \cup C_{n_2} \cup \ldots \cup C_{n_k}$ be a 2-factor *i.e.* a vertex-disjoint union of cycles. We completely characterize 2-factors *i.e.* we prove which 2-factors are not embeddable, which are uniquely embeddable and which have at least two distinct embeddings.

This is a joint work with Monika Pilśniak and Mariusz Woźniak.